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Abstract— There has been much research focusing on the
routing problem in delay tolerant networks (DTNs). Much of
the work has mainly focused on coding schemes for message
distribution, while other work has been done on the probabilistic
forwarding. Coding schemes achieves higher delivery rate via
redundancy before forwarding, while probabilistic forwarding
will efficiently limit the abuse of the store and forward scheme,
maintaining relatively high performance. Providing a reliable
and efficient forwarding scheme proves to be challenging as
coding and forwarding schemes should be jointly considered.
In our paper, we present an optimal probabilistic forwarding
scheme using fountain code, which we named as CFP, where
reliability and efficiency can be achieved at the same time. In
CFP, We use fountain codes to encode messages and provide
the forwarding rule to decide whether to forward messages to
another node. The probabilistic forwarding problem is modeled
as an optimal stopping problem and our forwarding rule also
consider the influence of fountain codes. We perform trace-
driven simulations and compare CFP with other protocols.
Simulation results show that, considering the delivery rate, delay,
and number of forwarders, CFP performs better than other
implemented protocols(Epidemic, OPF) in our simulation.

I. I

The ability to transport data from a source to a destina-
tion is a fundamental ability of all communication networks.
Recently, the concern about delay tolerant networks (DTNs)
routing has been growing due to its great challenges. In
DTNs, an instantaneous and constant end-to-end path may
not exist due to its lack of permanent connectivity. Moreover,
the unreliable and unexpected node behaviors in DTNs make
the routing problem even harder. An original routing protocol
in DTNs is epidemic, in which any node bearing messages
forwards them to any possible node within its radio range, until
the destination receives the message. This would maximize the
delivery rate, but cause an obvious problem - the poor scal-
ability, where forwarded messages will possibly floods over
the network. Moreover, the feedback mechanism is difficult to
design, as the acknowledgement also need a relatively long
time routing process.

Much efforts has been made to improve the efficient use of
network resources. Regrading this topic, there are two research
directions. On the one hand, a lot of work is done on coding
before messages are transmitted. One message is segmented
into smaller frames, which could be forwarded independently
over different paths. Moreover, a source node could distribute

not only the original frames, but also redundant coded frames.
If the destination receives enough number of frames, the orig-
inal message could be recover from them. On the other hand,
during the transmitting process, many researches focused on
finding an effective forwarding rule. When the node with a
message copy meets another node, the rule decides whether
or not to forward messages. There also exists an optimal
stopping policy for message forwarding [7]. In this way, the
total number of message copies is reduced and the network
resources are saved.

Unfortunately, neither these two types of schemes could
effectively solve the DTN routing problem alone. In the coding
based scheme, the reliability is achieved via redundancy, while
in the optimal forwarding scheme, the messages delivery
is constrained within limited hops, where routing efficiency
would be lost. How to achieve an efficient and effective coding
based optimal forwarding scheme is still challenging, as it is
difficult to balance between these two types of schemes.

In this paper, we jointly consider the two fields of research
work mentioned above and present our protocol CFP, which
is the "integration of fountain codes and optimal probabilistic
forwarding in DTNs". We use fountain codes, fragmenting
the original message for efficient distribution. In addition, we
present a forwarding rule to increase the delivery ratio while
making better use of network resources. The forwarding of
each frame could be modeled as an optimal stopping problem.
In addition, we also consider redundant factors in our forward-
ing rule which is related to the fountain code we used. We take
the influence of fountain codes on probabilistic forwarding into
consideration. We propose the modified stopping rule. Also,
we give the results based on different levels of fountain codes
and compare the consumption of network resources between
CFP and other protocols.

The main contributions of our paper are as follows:
• To the best of our knowledge, ours is the first one to

propose an optimal probabilistic forwarding protocol with
fountain codes in DTNs, which could effectively utilize
the reliability in the coding scheme and the efficiency in
the optimal forwarding scheme.

• We consider the influence on the forwarding rule caused
by fountain code. We perform better simulations with the
trace data from UMassDieselNet [1] and show the results
of comparing CFP with other protocols.



Our paper is organized as follows: In Section II, some
related work is presented. In section III, we introduce sev-
eral preliminaries. Also, in Section IV, we give a detailed
description of our model. Moreover, in Section V, we show
implemented simulation and the validated results. We make a
further discussion on our proposed algorithm CFP in Section
VI. Finally, in Section VII, we describe our possible future
work.

II.  

There has been much work done on both fountain codes
and probabilistic forwarding, which aims to reduce the cost of
forwarding while retaining a high performance rate.

Referring to fountain codes, [2] and [3] first erasure code
a message and distribute the generated code-blocks in DTNs.
[4] proposes general network coding techniques. [5] provides
general phases to use fountain codes, including initialization
phase, inference phase, encoding phase, storage phase, and
decoding phase. Although [5] is based on sensor networks, it
gives a full description of how to use fountain codes. In [6], the
authors give the closed form description of the performance
of delay tolerant ad hoc networks. [6] accounts for both the
overhead of the forwarding mechanism, captured in the form
of a given bound on energy, and the probability of successful
delivery of the entire message to the destination within a
certain deadline. Also, fountain codes are accounted for in
closed form.

On the other hand, [7] proposed the optimal probabilistic
forwarding protocol (OPF), which integrates an optimal deliv-
ery probability metric and an optimal forwarding rule. Firstly,
the authors assume that the optimal delivery probability of a
copy in a node i, heading for destination d, with a remaining
hop-count K (K > 0), and with a residual time-to-live T , is
denoted by Pi,d,k,Tr . Secondly, the optimal forwarding rule in
[7] is when a copy, whose remaining hop-count is K, is in
node i and node i meets node j at time-slot Tr, the decision
on whether to forward depends on whether replacing the copy
in i with two new copies in i and j, respectively, will increases
the overall delivery probability. If the message is forwarded
in time-slot Tr, then in the next time-slot, there are two new
copies with remaining hop-count K−1 in i and j, respectively,
whose delivery probabilities are Pi,d,k−1,Tr−1 and P j,d,k−1,Tr−1 ,
respectively. To maximize the delivery probability, the optimal
forwarding rule forwards the message if

1 − (1 − Pi,d,k−1,Tr−1 )(1 − P j,d,k−1,Tr−1 ) ≥ Pi,d,k,Tr−1 . (1)

In the case that a node meets several other nodes in the
same time-slot, forwarding the copy to the node with the
highest delivery probability is the optimal strategy to maximize
delivery probability.

III. 

Before we start, there are two preliminaries: fountain codes
[6] and optimal stopping rule problem [7]. Using fountain
codes, the original message can be divided to several fragments

with certain level of redundancy. In optimal stopping rule, the
action is forwarding.

In coding theory, fountain codes are a class of erasure
codes with the property that a potentially limitless sequence of
encoding symbols can be generated from a given set of source
symbols such that the original source symbols can ideally be
recovered from any subset of the encoding symbols of size
equal to or only slightly larger than the number of source
symbols.

The theory of optimal stopping is concerned with the
problem of choosing a time to take a particular action, in order
to maximize an expected reward or minimize an expected cost.

There have been many work done on the two subjects. Here,
we introduce both briefly.

A. Fountain codes

Fountain codes are a class of erasure codes. For k source
blocks x1, x2, . . . , xk and a probability distribution Ω(d)
with 1 ≤ d ≤ k, a fountain code with parameters (k,Ω) is a
potentially limitless stream of output blocks y1, y2, ..., yn(n >
k). Each output block is obtained by XORing d randomly and
independently chosen source blocks, where d is drawn from
a specially designed distribution Ω(d). The original source
symbols can ideally be recovered from any subset of the
encoding symbols of size equal to or only slightly larger than
the number of source symbols.

B. Optimal Stopping Rule Problem

The stopping rule problem is defined by two objects:
1) A sequence of random variables, x1, x2, . . . , xm whose

joint distribution is assumed known.
2) A sequence of real-valued reward functions, y0, y1(x1)

y2(x1, x2), . . . , ym(x1, x2, ..., xm), each of which is related.
Given these objects, the problem can be described as:
1) You are observing the sequence of random variables, and

at each step n, you can choose to either stop observing
or to continue.

2) If you stop observing, you will receive the reward yn,
which is the function of x1, x2, ..., xn.

3) You want to choose a stopping rule to maximize your
expected reward.

A stopping rule problem has a finite horizon if there is a
known upper bound T on the number of stages at which one
may stop. If stopping is required after observing x1,...,xT , we
say the problem has horizon T . In principle, such problems
may be solved by the method of backward induction. Since
we must stop at stage T , we first find the optimal rule at stage
T − 1. Then, knowing the optimal reward at stage T − 1, we
find the optimal rule at stage T − 2, and so on, back to the
initial stage (stage 0).

IV. S M

Our model combines fountain codes and optimal probabilis-
tic forwarding. It consists of three important parts:

1) Before transmitting, the original message must be split
into multiple frames. Through the operations of fountain



codes, the source frames would be coded into new
multiple frames, which would then be sent.

2) During every independent process of forwarding, each
node has to decide whether to forward the frame to the
next node or directly send to the destination.

3) For the destination, it needs to receive a certain number
of frames so that it is able to decode the original
message.

A. Using LT Codes to Split Messages

We use Luby transform (LT) code [8] to split messages. LT
codes are the first practical realization of fountain codes, which
uses Ideal Soliton or Robust Soliton distributions [8]. LT codes
are based on sparse bipartite graphs to trade reception overhead
for encoding and decoding speed, the same as other fountain
codes. The distinguishing characteristic of LT codes is that
its algorithm to encode and decode the message is relatively
simple.

The Ideal Soliton distribution Ωis(d) for k source blocks is
given by

Ωis(i) =


1
k , i = 1

1
i(i−1) , i = 2, 3, ..., k

(2)

By XORing d source blocks chosen from k source inputs,
where d is drawn according to the probability distribution
above, we can now generate a new random combination of
the original frames x1, x2, . . . , xk.

B. Optimal Forwarding Strategy

After the encoding part is completed, each frame needs to
be transmitted independently. During the process, the node
needs to transmit the frame to the next node and must decide
when to stop, that is to say, when transmitting the data
to the destination rather than forwarding to another node.
Fortunately, as introduced in the above "Related Works" part,
[7] has proposed a strategy of optimal forwarding protocol.
However, it did not include the consideration of fountain
codes. So, we make some changes to the optimal forwarding
protocol in [7].

In [7], the optimal forwarding rule is to forward the message
if

1 − (1 − Pi,d,k−1,Tr−1 )(1 − P j,d,k−1,Tr−1 ) ≥ Pi,d,k,Tr−1 . (3)

Pi,d,k,Tr denotes the optimal delivery probability of a copy in
node i, heading for destination d, with a remaining hop-count
is K(K > 0), and with a residual time-to-live Tr. And it has
modeled each forwarding as an optimal stopping problem. In
our model, this is still an optimal stopping problem, but we has
added fountain codes before messages are started to transmit.
Since the destination need only a certain number of frames
to recover the original message, instead of all the frames, the
optimal forwarding rule in [7] would be over-optimal here.
Suppose the 1 - δ is the success probability (δ > 0) that the
destination to decode with M number of frames, we add δ to
the optimal forwarding rule above. If

(1 − (1 − Pi,d,k−1,Tr−1 )(1 − P j,d,k−1,Tr−1 )) ∗ δ ≥ Pi,d,k,Tr−1 , (4)

the message would be forwarded. This rule reduces the chance
for a node to forward a message and save the use of network
resources.

Now we come to the computation of Pi,d,k,Tr . First, the
meeting probability of two nodes in any time slot of length U
is estimated under the assumption of exponential inter-meeting
time [9], [10] by

Mi, j = 1 − exp(− U
Ii, j

). (5)

Pi,d,k,Tr equals the sum of (1) the probability that the copy
will be forwarded in time-slot Tr and then be delivered, and
(2) the delivery probability Pi,d,k,Tr−1 when the message is not
forwarded in time-slot Tr multiple by the probability that node
i does not meet any node in Tr that satisfies the forwarding
criteria. [7] has given the algorithm to calculate Pi,d,k,Tr , which
can also be applied here.

C. Computation of Delivery Ratio

After the destination receives the frames, it needs a certain
number of these frames to decode the original data. Using
fountain codes, we know that for any δ, in order for the
destination to be able to decode the original message with
the probability of at least 1 - δ, it has t receive at least

M = klog(k/δ) (6)

packets [6]. Here, k still denotes the number of the original
frames.

On the other hand, the probability of a successful delivery
of a single frame can be computed as follows: let the time
between contacts of pairs of nodes be exponentially distributed
with given inter-meeting intensity λ. The validity of this model
has been discussed in [11], and its accuracy has been shown for
a number of mobility models. Also, the transmitted message
is relevant during some time τ. Let Xi(t) be the number of the
mobile nodes (excluding the destination) that have, at time t, a
copy of frame i. Denote by Di(τ) the probability of a successful
delivery of frame i by time τ. Then, given the process Xi (for
which a fluid approximation will be used), we have

Di(τ) = 1 − exp(−λ
∫ τ

0
Xi(s)ds) (7)

Fortunately, [6] has given the computation of the total
delivery rate, denoted by PM(τ). In addition, the number of
packets that reach the destination during the time interval [0,τ]
has a Poisson distribution with parameter −L(τ, p∗)p∗, where
p∗ is also given in (10) of [6].

PM(τ) =

M−1∑

i=0

(−L(τ, p∗)p∗)i

i!
exp(L(τ, p∗)p∗) (8)

V. S

We evaluate our protocol using the UMassDieselNet trace.
Also, we implement other protocols - OPF [7] and Epidemic
[15] - to compare with our protocol.



TABLE I
S  UMDN T

parameter name default range
initial hop-count (K) 1∼5

message time-to-live (Tr) 10 hours
simulation time 1 day day 1∼55

δ 0.6

A. Simulation Methods and Settings

In the UMassDieselNet [12], [13] bus system consisting of
40 buses, the bus-to-bus contacts (the durations of which are
relatively short) are logged. Our experiments are performed on
traces collected over 55 days during the spring 2006 semester,
with weekends, spring break, and holidays removed due to
reduced schedules. The bus system serves approximately ten
routes. There are multiple shifts serving each of these routes.
Shifts are further divided into morning (AM), midday (MID),
afternoon (PM), and evening (EVE) sub-shifts. Drivers choose
buses at random to run the AM sub-shifts. At the end of the
AM sub- shift, the bus is often handed over to another driver
to operate the next sub-shift on the same route or on another
route. Unfortunately, the all-bus-pairs contacts provided in the
original traces show no discernible contact pattern among the
nodes. We performed the data process in [14] to generate the
contacts at a sub-shift level which exhibit periodic behavior.
This process translates 55 days of the bus-to-bus contacts into
contacts between sub-shifts.

The default settings of the UMassDieselNet trace simulation
are shown in Table I. We use 1∼5 initial hop-counts in OPF.
We use the 55 days of traces to run respective simulations.
In each simulation, every node (sub-shift) sends a message
for a random destination node every five minutes. Since most
contacts in the UMassDieselNet trace are between hours 6
and 20, messages are only sent during hours 6 to 12, and we
set a uniform initial time-to-live of all messages to 10 hours.
We use one minute as the time unit for residual time-to-live
Tr. The mean inter-meeting time between all pairs of shifts
is generated from the 55 days of sub-shift based contacts. In
addition, the δ we chose is 0.6.

B. Simulation Results

The comparisons of the delivery rate, delay, and number
of forwarding are shown in Figures 1, 2, and 3, respectively.
From Figure 1, the delivery rate of Epidemic is better than
OPF and CFP. And the CFP has a better delivery rate than
OPF . We can tell from Figure 2 that the delay of CFP is
longer than OPF and Epidemic.

To better compare these three protocols, we compare the
values of delivery rate/delay/number of forwardings. The re-
sults are shown in Figure 4. CFP is higher than OPF, while
Epidemic is the smallest of these three.

We also compare the results among different δ, as shown in
Figure 5. Also, in Figure 6, we compute the average value of
every δ from Figure 5. The vertical axis is the average value
of points in a single line of Figure 5 while the horizontal axis

is the different values of δ, which denote the different lines
in Figure 5. We can tell from Figure 6 that there exists an
optimal value of δ.
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Fig. 1. The comparison of delivery rate among different protocols.
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Fig. 2. The comparison of delay among different protocols.

VI. D

In our model, we use the optimal stopping rule when
forwarding messages. But, there should be more places in
our model that we could apply the optimal stopping rule.
We can also model the level of fountain codes as an optimal
stopping problem. That is, the choose of δ should be an
optimal stopping problem. The smaller δ, the more packages
the destination need to decode. The larger δ, the more copies
there would be, which places an influence on the performance
of the whole network. So, when to stop the choose of δ would
be an interesting optimal stopping problem.

Moreover, the influence caused by fountain codes could be
made of use. A distributed strategy could be applied here to
decide which nodes have the higher probability to forward
messages, and which nodes have a lesser probability, due to
the situation of each node. In this way, the network resources
could be made more use of and the scalability of our protocol
would be improved.

VII. C  F W

We present a new protocol which combines fountain codes
with optimal probabilistic forwarding in DTNs. We also per-
form a trace-driven simulation and prove that our protocol is
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Fig. 4. The comparison of delivery rate/delay/number of forwardings

better than the Epidemic and OPF protocols. Some settings we
used in our simulation would have influence on our simulation
results. In the future, we plan to do a certain number of
experiments and implement our protocol in the real environ-
ment to achieve a more accurate and reliable result. Also, the
comparison between OPF and CFP on the consumption of
network sources will be extensively conducted. We plan to
compare the scalability of these two protocols in the future.
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